Sodium orthovanadate-resistant mutants of Saccharomyces cerevisiae show defects in Golgi-mediated protein glycosylation, sporulation and detergent resistance.
نویسندگان
چکیده
Orthovanadate is a small toxic molecule that competes with the biologically important oxyanion orthophosphate. Orthovanadate resistance arises spontaneously in Saccharomyces cerevisiae haploid cells by mutation in a number of genes. Mutations selected at 3 nM sodium orthovanadate have different degrees of vanadate resistance, hygromycin sensitivity, detergent sensitivity and sporulation defects. Recessive vanadate-resistant mutants belong to at least six genetic loci. Most mutants are defective in outer chain glycosylation of secreted invertase (van1, van2, van4, van5, van6, VAN7-116 and others), a phenotype found in some MNN or VRG mutants. The phenotypes of these vanadate-resistant mutants are consistent with an alteration in the permeability or specificity of the Golgi apparatus. The previously published VAN1 gene product has a 200 amino acid domain with 40% identity with the MNN9 gene product and 70% identity with the ANP1 gene product. Cells containing the van1-18, mnn9 (vrg6) or anp1 mutations have some phenotypic similarities. The VAN2 gene was isolated and its coding region is identified and reported. It is an essential gene on chromosome XV and its translated amino acid sequence predicts a unique 337 amino acid protein with multiple transmembrane domains.
منابع مشابه
The yeast VRG4 gene is required for normal Golgi functions and defines a new family of related genes.
Sodium vanadate is an effective agent for the enrichment of yeast mutants with defects in glycosylation steps that occur in the Golgi complex (Ballou, L., Hitzeman, R. A., Lewis, M. S., and Ballou, C. E. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 3209-3212). We isolated and screened vanadate-resistant glycosylation mutants in the budding yeast, Saccharomyces cerevisiae, to identify any that may...
متن کاملYeast glycosylation mutants are sensitive to aminoglycosides NETA
Aminoglycosides are a therapeutically important class of antibiotics that inhibit bacterial protein synthesis and a number of viral and eukaryotic functions by blocking RNA-protein interactions. Vanadate-resistant Saccharomyces cerevisiae mutants with defects in Golgi-specific glycosylation processes exhibit growth sensitivity to hygromycin B, an aminoglycoside [Ballou, L., Hitzeman, R. A., Lew...
متن کاملSystematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion
BACKGROUND As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secret...
متن کاملSynthetic genetic interactions with temperature-sensitive clathrin in Saccharomyces cerevisiae. Roles for synaptojanin-like Inp53p and dynamin-related Vps1p in clathrin-dependent protein sorting at the trans-Golgi network.
Clathrin is involved in selective protein transport at the Golgi apparatus and the plasma membrane. To further understand the molecular mechanisms underlying clathrin-mediated protein transport pathways, we initiated a genetic screen for mutations that display synthetic growth defects when combined with a temperature-sensitive allele of the clathrin heavy chain gene (chc1-521) in Saccharomyces ...
متن کاملThe Pmt2p-Mediated Protein O-Mannosylation Is Required for Morphogenesis, Adhesive Properties, Cell Wall Integrity and Full Virulence of Magnaporthe oryzae
Protein O-mannosylation is a type of O-glycosylation that is characterized by the addition of mannose residues to target proteins, and is initially catalyzed by evolutionarily conserved protein O-mannosyltransferases (PMTs). In this study, three members of PMT were identified in Magnaporthe oryzae, and the pathogenic roles of MoPmt2, a member of PMT2 subfamily, were analyzed. We found that MoPm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 140 3 شماره
صفحات -
تاریخ انتشار 1995